Space-Time Finite Element Methods for Parabolic Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems

In this paper we summerize recent results on a posteriori error estimation and adaptivity for space-time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This al...

متن کامل

Adaptive Finite Element Methods for Parabolic Problems

We continue our work on adaptive nite element methods with a study of time discretization of analytic semigroups. We prove optimal a priori and a posteriori error estimates for the discontinuous Galerkin method showing, in particular, that analytic semigroups allow long-time integration without error accumulation. 1. Introduction This paper is a continuation of the series of papers 1], 2], 3], ...

متن کامل

Space-Time Finite Element Methods for Dynamic Frictional Contact Problems

Space-time finite element methods for dynamic frictional contact problems are discussed in this article. The discretization scheme is based on a mixed formulation of the continuous problem, where the Lagrange multipliers represent the contact and frictional stresses. Using piecewise d-linear and globally continuous basis functions in space and time to construct the trial space for the displacem...

متن کامل

Gradient Recovery in Adaptive Finite Element Methods for Parabolic Problems

Abstract. We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the ...

متن کامل

Implicit-explicit multistep finite element methods for nonlinear parabolic problems

We approximate the solution of initial boundary value problems for nonlinear parabolic equations. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. One part of the equation is discretized implicitly and the other explicitly. The resulting schemes are stable, consistent and very efficient, since their implementation requires at eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Methods in Applied Mathematics

سال: 2015

ISSN: 1609-4840,1609-9389

DOI: 10.1515/cmam-2015-0026